
Freedom CPU Project
F-CPU Design Team
Request For Comment
created July 8, 1999 by Whygee
July 10 : added some more.
11th: adapted for converstion to PDF with HTMLDOC.
8/2: added yet some more.

F1 CORE DRAFT PROPOSAL REV. 1.1

 What, why :

 This document is the first study and working basis for the third generation of F-CPU (F1) architecture.
This document explains the architectural and technical backgrounds that led to the current state of the F1
core, as to reduce the amount of basic discussions on the mailing list and introduce the newcomers to the
most recent concepts that have been discussed. The draft will (hopefully) evolve rapidly and incorporate
more advanced discussions and techniques. This is not a definitive draft, it is open to any modification that
the mailing list agrees to make.

 This document is independent from the F-CPU Architecture Guide which describes the instruction set
and the programming rules from the high level point of view. This draft describes the way the instructions
are executed, rather independently from the instruction formats, fields or conventions, because only the
instruction decoder is concerned.

 Since the F-CPU project is rather independent on how the instructions are executed, there is no garantee
that the F1 CPU will use this core. It has therefore been agreed that the core described in this draft is called
F0.

Please send comments to the F-CPU mailing list.

F1 CORE DRAFT PROPOSAL REV. 1.1

1

mailto:whygee@mime.up8.edu
f-cpu@egroups.com
f-cpu@egroups.com
f-cpu@egroups.com
f-cpu@egroups.com

 A bit of F-CPU history :

 The first generation was a "memory to memory" (M2M) architecture that disapeared with the original
F-CPU team members. It was believed that context switch time consumed much time, so they mapped
memory regions to the register set, as to switch the registers by changing the base register. I have not
tracked down the reasons why this has been abandonned, I came later in the group. Anyway, they launched
the F-CPU project, with the goals that we now know, and the dream to create a "Merced Killer". Actually, i
believe that we should compete with the ALPHA directly ;-)

 The second generation was a "Transfer Triggered Architecture" (TTA) where the computations are
triggered by transfers between the different execution units. The instructions mainly consist of the source
and destination "register" numbers, which can also be the input or output ports of the execution units. As
soon as the needed input ports are written to, the operation is performed and the result is readable on the
output port. This architecture has been promoted by the anonymous AlphaRISC, now known as
AlphaGhost. He has done a lot of work on it but he has left the list and the group lost track of the project
without him.

 The third generation rose from the mailing list members who naturally studied a basic RISC
architecture, like the first generation MIPS processors or the DLX described by Patterson Hennessy, the
MMIX, the MISC CPUs, and other similar, simple projects. From a simple RISC project, the design grew in
complexity and won independence from other existing architectures, mainly because of the lessons learnt
from their history and the specific needs of the group, which led to specific choices and particular
characteristics. This is what we will discuss here.

 The main characteristics :

 The core described here can be thought as a crossover between a R2000 chip and a CDC6600 computer.
Some constraints are similar : the F-CPU must be as simple and performant as possible. From the R2000, it
inherits from the RISC main characteristics like fixed size instructions, the register set and the size of the
chip that is bound by the current technology. In the CDC6600, F0 finds the execution scheme, the
scoreboard, the multiple parallel execution units and most of all : the inspiration for smart techniques that
ease both design and programming.

 The following text is a step-by-step description of the currently developped F-CPU. The features will be
more deeply described and get interdependent, so it is recommended to read them from the beginning :-)

F1 CORE DRAFT PROPOSAL REV. 1.1

2

 The instructions are 32-bit wide. This is a heritage of the traditional RISC processors, and the benefits
of fixed size instructions are not discussed anymore, except for certain niche applications. Even the
microcontroller market is invaded by RISC cores with fixed size intructions.
 The instruction size can be discussed a bit more anyway. It is clear that a 16-bit word can't contain
enough space to code 3-operand instructions involving tens of registers and operation codes. There are
some 24- and 48-bit instruction processors, but they are limited to niche markets (like DSP) and they don't
fit in even-sized cache lines. If we access memory on a byte basis, this becomes too complex. Because the
F-CPU is mainly a 64-bit processor, 64-bit instructions have been proposed, where two instructions are
packed, but this is similar to 2 32-bit instructions which can be atomic, while 64-bit pairs can't be split.
There is also the Merced (IA64) that has 128-bit instruction words, each containing 3 opcodes and register
dependency informations. Since we use a simple scoreboard, and because IA64-like (VLIW) compilers are
very tricky to program, we let the CPU core decide wether to block the pipeline or not when needed, thus
allowing a wide range of CPU core types to execute the same simple instructions and programs.

Since the F1 microarchitecture was not clearly defined at the beginning of the project, the instructions had
to execute on a wide range of processor types (pipelined, superscalar, out-of-order, VLIW, whatever the
future will create). A fixed-sized, 32-bit instruction set seems to be the best choice for simplicity and
scalability in the future. Core-dependent optimisations can be made on the binaries by applying specific
scheduling rules, but the application will still run on other family members that have a completely different
core.

 Register 0 is "read-as-zero/unmodifiable". This is another classical "RISC" feature that is meant to
ease coding and reduce the opcode count. This was valuable for earlier processors but current technologies
need specific hints about what the instruction does. It is dumb today to code "SUB R1,R1,R1" to clear R1
because it needs to fetch R1, perform a 64-bit substraction and write the result, while all we wanted to do is
simply clear R1. This latency was hidden on the early MIPS processors but current technologies suffer from
this kind of coding technique, because every step contributing to perform the operation is costly. If we want
to speedup these instructions, the instruction decoder gets more complex.
So, while the R0=0 convention is kept, there is more emphasis on specific instructions. For example,
"SUB R3,R1,R2" which compares R1 and R2, generaly to know if greater or equal, can be replaced in F1 by
"CMP R3,R1,R2" because CMP does use a special comparison unit which has less latency than a
substraction (after all we don't care about the numerical result, we simply want its property).
"MOV R1,R0" clears R1 with no latency because the value of R0 is already known (hardwired to zero).

F1 CORE DRAFT PROPOSAL REV. 1.1

3

 The F-CPU has 64 registers, while RISC processors traditionally have 32 registers. More than a
religion war, this subject proves that the design choices are deeply influenced by a lot of parameters (this
looks like a thread on comp.arch). Let's look at them:

- "It has been proved that 8 registers are plain enough for most algorithms." is a deadbrain argument that
appears sometimes. Let's see why and how this conclusion has been made :
- it is an OLD study,
- it has been based on schoolbook algorithm examples,
- memory was less constrianing than today (even though magnetic cores was slow) and memory to memory
instructions were common,
- chips had less room than today (tens of thousands vs. tens of million),
- we ALWAYS use algorithms that are "special" because each program is a modification and an adaptation
of common cases to special cases, (we live in a real world, didn't you know ?)
- who has ever programmed x86 processors in assembly langage knows how painful it is...
The real reason for having a lot of registers is to reduce the need to store and load from memory. We all
know that even with several cache memory levels, classical architectures are memory-starved, so keeping
more variables close to the execution units reduces the overall execution latency.

- "If there are too much registers there is no room for coding instructions" : that is where the design of
processors is an art of balance and common sense. And we are artists, aren't we ? Through register
renaming, the number of physical register can be virtually extended to any physical limit.

- "The more there are registers, the longer it takes to switch between tasks or acknowlege interrupts" is
another reason that is discussed a lot. Then, i wonder why Intel has put 128 registers in IA64 ???
It is clear anyway that *FAST* context switch is an issue for a lot of obvious reasons. Several techniques
exist and are well known, like register windows (a la SPARC), register bank switching (like in DSPs) or
memory-to-memory architectures (not much known), but none of them can be used in a simple design and a
first proto, where transistor count and complexity are an issue.
In the discussions of the mailing lists, it appeared that:
 - most of the time is actually spent in the scheduler's code (if we're discussing about OS speed) so the
register backup issue is like the tree that hides the forest,
 - the number of memory bursts caused by a context switch or an interrupt wastes most of the time when
the memory bandwidth is limited (common sense and performance measurements on a P2 will do the rest if
you're not convinced)
 - A smart programmer will interleave register backup code with IRQ handler code, because an
instruction usually needs one destination and two sources, so if the CPU executes one instruction per cycle
there is NO need to switch all the register set in one cycle. In fewer words, no need of register banks.
These facts led to design the "Smooth Register Backup", a hardware technique which replaces the software
at interleaving the backup code with the computation code.

F1 CORE DRAFT PROPOSAL REV. 1.1

4

news:comp.arch

 A code like this:
IRQ_HANDLER:
 clear R1 ; cycle 1
 load R2,[imm] ; cycle 2
 load R3,[imm] ; cycle 3
 OP R1,R2,R3 ; cycle 4
 OP R2,R3,R0 ; cycle 5
 store R2,[R3] ; cycle 6
....

can be a common code that would be the beginning of an IRQ handler.
Whatever the register number is, we only have to save R1 before cycle 1, R2 before cycle 2 and R3 before
cycle 3. This would take 3 instructions that would be interleaved like this:
IRQ_HANDLER:
 store R1,[imm]
 clear R1 ; cycle 1
 store R2,[imm]
 load R2,[imm] ; cycle 2
 store R3,[imm]
 load R3,[imm] ; cycle 3
 OP R1,R2,R3 ; cycle 4
 OP R2,R3,R0 ; cycle 5
 store R2,[R3] ; cycle 6
....

 The "Smooth Register Backup" is a simple hardware mechanism that automatically saves registers from the
previous thread so no backup code need being interleaved.
It is based on a simple scoreboard technique, a "find first" algorithm and needs a flag per register (set when
the register has been saved, reset if not). It is completely transparent to the user and the application
programer, so it can be changed in future processor generations with few impact on the OS. This technique
will be described deeply later.

The conclusion of these discussions is that 64 registers are not too much.
The other problem is : is 64 enough ?
Since the IA64 has 128 registers, and superscalar processors need more register ports, having more registers
keeps the register port number from increasing. As a rule of thumb, a processor would need (instructions
per cycle)x(pipeline depth)x3 registers to avoid register stalls on a code sequence without register
dependencies. And since the pipeline depth and the instructions per cycle both increase to get more
performance, the register set's size increases. 64 registers would allow a 4-issue superscalar CPU to have 5
pipeline stages, which looks complex enough. Later implementation will probably use register renaming
and out-of-order techniques to get more performance out of common code, but 64 registers are yet enough
for a prototype.

As to increase the number of instructions executed during each cycle, the future F-CPUs will need explicit
register renaming. This will allow a F-CPU computer to have tens of execution units without changing the
instruction format.

F1 CORE DRAFT PROPOSAL REV. 1.1

5

 The F-CPU is a variable-size processor. This is a controversial side of the project that has been finally
accepted recently. There are mainly two reasons behind this choice :
- As processors and families evolve, the data width becomes too tight. Adapting the data width on a
case-by-case basis led to the complexities of the x86 or the VAX which are considered as good examples of
how awful an architecture can become.
- We often need to process data of different sizes in the same time, such as pointers, characters, floating
point and integer numbers (for example in a floating-point to ASCII function). Treating every data with the
same big size is not an optimal solution because we will spare registers if several characters or integers can
be packed into one register which would be rotated to access each subpart.
We need *from the beginning* a good way to adapt on the fly the size of the data we handle. And we know
that the width of the data to process will increase a lot in the future, because it's almost the only way to
increase performance. We can't count on the regular performance increase provided by the new silicon
processes because they are expensive and we don't know if it will continue. The best example of this data
parallelism is SIMD programming, like in the recent MMX, KNI, AlphaPC, PPC or SPARC instruction sets
where one instruction performs several operations. From 64, it evolves to 128 and 256 bits per instruction,
and nothing keeps this width from increasing, while this increase gives more performance. Of course, we
are not building a PGP-breaker CPU, and 512-bit integers are almost never needed. The performance lies in
the parallelism, not the width. For example, it would be very useful to parallely compare characters, like
during substring search : the performance of such a program would be directly proportional to the width of
the data that the CPU can handle.

The next question is : how wide ?
Because fixed sizes give rise to problems at one time or another, deciding of an arbitrarily big size is not a
good solution. And, as seen in the example of substring search, the wider the better, so the solution is : not
deciding the width of the data we process before execution.
The idea is that software should run as fast as possible on every machine, whatever the family or generation
is. The chip maker decides of the width it can fund, but this choice is independent from the programming
model, because it can also take into account : the price, the technology, the need, the performance...
So in few words : we don't know a priori the size of the registers. We have to run the application, which
will recognize the computer configuration with special instructions, and then calibrate the loop counts or
modify the pointer updates. This is almost the same process as loading a dynamic library...
Once the program has recognized the characteristic width of the data the computer can manage, the
program can run as fast as the computer allows. Of course, if the application uses a size wider than possible,
this generates a trap that the OS can handle as a fault or a feature to emulate.

F1 CORE DRAFT PROPOSAL REV. 1.1

6

 Then the question is : how ?
We have to consider the whole process of programming, coding, making processors and enhancing them.
The easiest solution is to use a lookup table, which interprets the 2 bits of the size flag defined in the
F-CPU Architecture Guide. The flags are by default interpreted like this:

FLAGS SIZE in
bytes

WIDTH in bits

00 1 8

01 2 16

10 4 32

11 8 64

Using a lookup table that would be located in the instruction decoding unit, one could modify the
interpretation of this field to any power of two. This way, no limitation exist in the instruction itself. The
lookup table will probably be changed from the default value through 4 special registers. The instructions
accessing the special registers will ensure that protection and data sizes are coherent, triggering an
exception otherwise. A fifth special register will be hardwired to the highest possible value, which is
dependent only from the processor.

The software, and particularly the compiler will be a bit more complex because of these mechanisms. The
algorithms will be modified (loop counts will be changed for example) and the four special registers must
be saved and restored during each task switch or interrupt. Simple compiler could simply use the default
four sizes but more sophisticated compilers will be needed to benefit from the performance of the later
chips. At least, the scalability problem is known and solved since the beginning, and the coding techniques
won't change between processor generations. This garantees the stable future of the FCPU, and the old
"RISC" principle of letting the software solve the problems is used once again. I hope that this side of the
project will be soon included in the Architecture Guide, and that coding examples will be given, but we can
consider that prototype F1s will be hardwired to the default values, and attempting to modify them will
trigger a fault. But later, 4096-bit F-CPUs will be able to run programs designed on 128-bit F-CPUs and
vice versa.

F1 CORE DRAFT PROPOSAL REV. 1.1

7

 The F-CPU has generalized registers, meaning that integer numbers are mixed with pointers and
floating-point numbers. The most common objection is from the hardware side, because a first effect is that
it increases the number of read/write ports in the register set (this is almost similar to having twice more
registers).
The first argument from the F-CPU side is that software gets simpler, and that there are hardware solutions
to that problem. The first problem comes from the algorithms themselves: some are purely integer-based,
while other need a lot of floating point values. Having a split register set for integer and floating point
numbers would handicap both algorithms, because one of the set would not be used (the FP set would be
unused for example during programs like a mailer or a bitmap graphics edition, while a lot of FP is needed
during ray-tracing or simulations). And a lot of them is needed when it happens.
Another software aspect is about compilation, where register allocation algorithms are critical for
performance. Having a simple (single) register "pool" eases the decisions.

The second answer to the hardware problem is in the hardware. The first F-CPU chip, the F1, will be a
single-issue pipelined processor, where only two register read ports are needed, thus there is no register set
problem at the beginning.
Later chips, with more instructions issued per cycle, will probably use a technique dear to the team : each
register has attribute (or "property") bits that indicate if the register is used as a pointer, a floating point
number, etc, so they can be mapped to different physical register sets while still being unified from the
programming point of view. The attributes are regenerated automaticaly and don't need to be saved or
restored during context switches.

 The F-CPU has special registers that store the context of the processor, manage the vital functions and
ensure protection.
These special registers can be accessed only through a few special instructions and can trigger a trap if the
register does not exist or is not allowed for access in the current running context. Since almost everything is
managed through these special registers, they are the key for protection in a multi-user, multi-task modern
operating system.

F1 CORE DRAFT PROPOSAL REV. 1.1

8

 The F-CPU has no stack pointer. Or more exactly, it has no dedicated stack pointer. It has no stack at
all, in fact, because each register can be used to access memory. One single hardwired stack pointer would
cause problems that are found in CISC processors and require special tricks to handle them. For example,
several push pop instructions cause multiple register uses in a single cycle in a superscalar processor, which
requires special material.
In the RISC world, conventions (the ABI) are used to decide how to communicate between applications or
how to initialize the registers at their beginning, and provided you save the registers between two calls,
nothing keeps you from having 60 stacks at once if your algorithm requires it.
Accessing the stack is performed with the single load/store instruction which has post-increment (only)
capability. Considering an expand-down stack pointed to by R3, we will code:
pop:
 load.64 R2,[R3]+8

push:
 store.64 R2,[R3]-8

Since the addition and the memory fetch are performed in the same time, the updated pointer is available
after the instruction.
The "Smooth Register Backup" hardware in place can be used by instructions, but none has been agreed
upon yet. There may be an instruction that saves or restores parts or all the register set to a specified
location but this is only an optional feature.

 The F-CPU has no condition code register. It is not because we don't like them but they cause some
troubles when the processor scales up in frequency and instructions per cycle : managing a few bits
becomes as complex as the above described stack.
The solution to this problem is the classical RISC fashion : a register is either zero or not. A branch or a
conditional operation is executed if a register is zero (or not). Therefore, several conditions can be setup,
without the need to manage a fixed set of bits (for example during context switches).
But, as explained later, reading a register is rather "slow" in the F1 and the latency may slow down a large
number of usual instructions. The solution is not to read them, but a "cache" copy of the needed attribute.
Like described above for the "attribute" or "property" bits of the registers for the floating point issue, each
register has an attribute bit which is regenerated each time the register is written. While the register is being
acccessed, the value that is present on the write bus is checked for 0 and one bit out of 63, corresponding to
the register we write, is set or reset depending on the result. This set of "transparent latches" is situated
close to the instruction decoder in order to reduce the latency of conditional instructions. Since they are
regenerated at each write, there is no need to save or restore them during context switches, and there are no
coherency issues.

 The problem of some other properties or status flags, mainly of arithmetic order, is not yet completely
solved. It is sure though that this must go through the use of the general register set, or we'll experience
troubles saving them.

F1 CORE DRAFT PROPOSAL REV. 1.1

9

 The F-CPU is superpipelined.
When designing a microprocessor, one of the first question is "what is the granularity of the pipeline ?".
This is not a critical issue for "toy processors" or designs that are adapted from existing processors, but the
F1 is not a toy and it must be very performant since the first prototype... For the F1 case, where the first
prototype will probably be a FPGA or an ASIC but not a full-custon chip, performance matters more
because the process will not be able to compete with existing chips. Performance always matters anyway,
but in our case there is a strong technological handicap. We need a technique that reaches the same "speed"
with slower technology.

So the equation is : speed = silicon technology x critical datapath length, or speed = speed of one transistor
x number of transistors, so with slow transistors the only way to run fast is to reduce the critical datapath (as
an approximative estimation, because other parameters influence this). So now, what is the minimal
operation we can perform without overloading the chip with flip-flops ?
The depth of around ten transistors is a compromise between functionality and atomicity. We can create
circuits that have around six logical gates of depth or add eight-bit numbers. Care is taken to have simple
and fast "building blocks", but the good side is that with 6 logic gates we can't make complex things, while
longer datapaths usually give birth to complex problems. With this "limitation" in mind, we also limit
complexity and only neighbour-to-neighbour connexions between units are possible. Furthermore, as soon
as a unit becomes too complex, it becomes either "parallelized" (a large lookup table can be used for
example) or "serialized" (in another word, pipelined) so there is no need to slow down the processor or use
asynchronous technology.

The net effect of this bias toward extremely fine grained logic and pipeline stages is that even an addition
becomes "slow" because it needs more cycles than usual. This apparent slowness is companded by higher
performance through overlapping of the operations (pipelining) but requires the use of coding techniques
usually found in superscalar processors (pointer duplication, loop unrolling and interleaving etc.). Because
the stages are shorter, there are more pipeline stages than usual, that's why the F-CPU can be considered as
superpipelined. But it is only one aspect of the project and today, several processors are also superpipelined.

F1 CORE DRAFT PROPOSAL REV. 1.1

10

 The F-CPU 1 implements an out of order completion pipeline to get more performance from a
single-issue pipeline. This is NOT a superscalar or out-of-order execution scheme but the "adaptation" of a
simple pipelined CPU.
The fundamental reason behind this choice is that not all instructions really take the same time to complete.
This fact becomes more important in the F-CPU because it is superpipelined, and one short instruction will
be penalized by longer instructions which would lengthen the pipeline. For example, if we want to calibrate
the pipeline length on a 64-bit addition, then longer operations like division, multiplication or memory
access with cache miss will freeze the whole pipeline ; on the other side, simple register-to-register moves
or simply writing an immediate value to a register will be much slower than actually needed. This can be
done on an early MIPS processor but not on a superpipelined processor.

Let's look at the instructions that need to be completed, after the decoding stage :

approximative cycles : 1 2 3 4
--
write imm to reg: write dest
load from memory: read address write dest
write to memory: read address
logic operation: read operands operation write result
arithmetic op.: read operands operation1 operation2 write result
move reg to reg: read source write dest.

We can also notice that successive instructions may be independent, not needing the result of the precedent
instructions. Last remark is that they don't all need the same hardware. We can come to some conclusions :
not all instructions need to read and write registers or compute something, not all instructions complete at
the same speed, and some instructions may be much longer than others (for example, reading a memory
location with a cache miss, compared to a simple logic operation). We need a variable sized pipeline that
allows several instructions to be performed and finish at the same time. One way to envision this is to
consider the pipeline as "folded", or "forked" like in a superscalar processor. But this all consists to three
successive and optional things : reading operands, processing them and writing the result.
- Reading the operands is not a problem since at most two registers can need to be read in one cycle. this is
limited by the instructions themselves.
- Computing is fully pipelined and independent because specialized units process the data.
- Writing the results is a bit more complex because several operations can complete at the same time. A one
cycle operation (logical operation for example) will complete at the same time as a two cycle (arithmetic)
operation that has been issued during the precedent cycle.
For this last reason, the register set has two write buses. In case more than two values must be written at the
same time, the "oldest" instruction (earliest issued) has priority.
This kind of processor core has the advantage that long operations don't slow down or block the whole
program if the result data are not needed before the operation is finished. For example, a memory read can
cause cache miss delays but this won't keep the other execution units to do their job and write their result to
the register set. Of course, this puts some pressure on the compiler but not more than for other existing
processors, and careful coding has always paid anyway.

F1 CORE DRAFT PROPOSAL REV. 1.1

11

 The difference between OOO completion and OOO execution is that OOO execution CPUs can issue the
operations out of order and need a last unit called "completion unit" or "retire unit" that validates the
operations in the program order. This also requires "renamed" registers that hold the temporary results
before they are validated for good by the completion unit. All these "features" can be avoided by the
techniques described in this document and, unlike OOO execution processors (like PowerPC and P6 cores)
the peak performance is not limited by the size of the completion unit's FIFO (or the "ReOrdering Buffer")
but by the number of register ports.

 The F-CPU uses a scoreboard because it is the simplest way to handle the out-of-order nature of the
processor. The way it works is very simple : each register has a flag that is set when the result is currently
being computed, and the instructions are delayed until no flag is set for the registers it uses for read and
write. This way, strict coherency is ensured and no operation can conflict with another at the execution
stage : verification of conflicts is done at only one point.
These flags are not exactly like the "attribute" bits because they are not directly accessible by the user but
they have the same dynamic behaviour and are not saved or restored.
Because they don't occur often and are not critical for performance, write-after-write situations are not
checked by the scoreboard. The simple rule of blocking an instruction at the decode stage if at least one of
the used (read or written) register is not ready is strictly enforced. Of course, the Register 0 which is
hardwired to 0 is the only exception and does not block anything.
The scoreboard interacts with the "Smooth Register Backup" mechanism to ensure coherency between the
switching tasks.

 The F-CPU uses a crossbar between the register set and the execution units because :
- It is the easiest way to "fold" the pipeline.
- It provides a "one fits all" register bypass bus that shortens the latency between dependent instruction.
- It reduces the number of register ports.

Because of its role, the crossbar (or Xbar for short) is a central part of the CPU.
The register set is only written or read through this device which virtually provides it with more than ten
ports. It allows the execution units to communicate without the need to write and read registers (in register
bypass mode, when operations are dependent) it provides the hardwired register 'zero' and the results are
checked for zero with two additional ports.

The Xbar extends the register set's read and write ports, making 4 "vertical" buses (see figure 2), and each
four bus is connected to one of the input and output ports of each execution unit with "horizontal" buses. It
also performs some width formatting (byte, word, etc).

Because of the relatively high number of ports, the crossbar uses a lot of surface and transistors. It requires
a cycle of his own to let the data flow through its whole length, and the goal of ten equivalent transistors is
likely to be reached fast, because of both transistor count and wire lengths. Therefore, accessing a register
takes two cycles from the time the register number has been decoded : one cycle for the register set and
another for the Xbar. But when consecutive instructions are dependent, the result that will be written to a

F1 CORE DRAFT PROPOSAL REV. 1.1

12

register is present on the Xbar and can be used during the next cycle for the next operation ("register
bypass").

 This can be summarized in the following drawing :

figure 1 : the pipeline is folded around the Xbar.

F1 CORE DRAFT PROPOSAL REV. 1.1

13

figure 2 : The first F-CPU chip proposal.

F1 CORE DRAFT PROPOSAL REV. 1.1

14

figure 3 : A more precise F-CPU description.

F1 CORE DRAFT PROPOSAL REV. 1.1

15

